NGF-independent survival of postganglionic sympathetic neurons in neuronal-vascular smooth muscle cocultures.

نویسنده

  • D H Damon
چکیده

The present study tests the hypothesis that vascular cells promote the survival of postganglionic sympathetic neurons in the absence of nerve growth factor (NGF). To test this hypothesis, neurons isolated from superior cervical ganglia of 2- to 4-day-old rat pups were grown in the absence of NGF and in the absence and presence of vascular smooth muscle cells (VSM). Neuronal survival was assessed as a function of time in culture. At all time points studied, VSM promoted the survival of the neurons. After 5 days in the absence of NGF, 7 +/- 2% of neurons survived in the absence and 28 +/- 7% survived in the presence of VSM. An endothelin receptor antagonist reduced neuronal survival in cocultures grown in the absence of NGF. These data indicate that VSM produce factors other than NGF that promote the survival of cultured postganglionic sympathetic neurons. The data also indicate that endothelin contributes to this effect and suggest that endothelin as well as other VSM-derived factors may play a role in the development of sympathetic innervation to the vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TH and NPY in sympathetic neurovascular cultures: role of LIF and NT-3.

The sympathetic nervous system is an important determinant of vascular function. The effects of the sympathetic nervous system are mediated via release of neurotransmitters and neuropeptides from postganglionic sympathetic neurons. The present study tests the hypothesis that vascular smooth muscle cells (VSM) maintain adrenergic neurotransmitter/neuropeptide expression in the postganglionic sym...

متن کامل

Cultured Smooth Muscle Ganglion Neurons Targets Survival Activity for

Cultured neurons require specific trophic agents in order to survive. This dependence is thought to resemble the neuron-target interdependence that develops in vivo during synaptogenesis and neuronal cell death. The notion that neurons in general derive trophic support from their synaptic targets is based primarily on studies of peripheral neurons and motor neurons. To assess the general applic...

متن کامل

VEGF promotes vascular sympathetic innervation.

The sympathetic nervous system, via postganglionic innervation of blood vessels and the heart, is an important determinant of cardiovascular function. The mechanisms underlying sympathetic innervation of targets are not fully understood. This study tests the hypothesis that target-derived vascular endothelial growth factor (VEGF) promotes sympathetic innervation of blood vessels. Western blot a...

متن کامل

Vascular-derived artemin: a determinant of vascular sympathetic innervation?

Vascular sympathetic innervation is an important determinant of blood pressure and blood flow. The mechanisms that determine vascular sympathetic innervation are not well understood. The present study tests the hypothesis that vascular-derived artemin promotes the development of sympathetic innervation to blood vessels by promoting sympathetic axon growth. RT-PCR and Western analyses indicate t...

متن کامل

VSM growth is stimulated in sympathetic neuron/VSM cocultures: role of TGF-beta2 and endothelin.

Sympathetic nerves are purported to stimulate blood vessel growth. The mechanism(s) underlying this stimulation has not been determined. With use of an in vitro coculture model, the present study tests the hypothesis that sympathetic neurons stimulate the growth of vascular smooth muscle (VSM) and evaluates potential mechanisms mediating this stimulation. Sympathetic neurons isolated from super...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 280 4  شماره 

صفحات  -

تاریخ انتشار 2001